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Abstract
We analyse the statistics of electrostatic energies (and their differences) for
a quantum dot system composed of a finite number K of electron islands
(metallic grains) with random capacitance–inductance matrix C, for which the
total charge is discrete, Q = Ne (where e is the charge of an electron and
N is an integer). The analysis is based on a generalized charging model,
where the electrons are distributed among the grains such that the electrostatic
energy E(N) is minimal. Its second difference (inverse compressibility)
χN = E(N + 1) − 2E(N) + E(N − 1) represents the spacing between
adjacent Coulomb-blockade peaks appearing when the conductance of the
quantum dot is plotted against gate voltage. The statistics of this quantity for
single grain quantum dots has been the focus of experimental and theoretical
investigations during the last two decades. In the more general case of quantum
dots composed of several grains, we provide an algorithm for calculating
the distribution function corresponding to χN and show that this function is
piecewise polynomial.

PACS numbers: 05.30.Fk, 05.45.Mt, 41.20.Cv, 73.21.La

1. Introduction

The physics exposed in the addition spectra of quantum dots is rather rich, and hence its
investigation is at the focus of both experimental and theoretical studies. After the origin of
Coulomb-blockade peaks has been elucidated, investigation is directed towards more subtle
questions such as their heights, widths and spacings. The underlying physics is related to the
ground-state energy, chemical potential and inverse compressibility of quantum dots composed
of a few metallic electron islands coupled capacitively and inductively to each other.
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The problem of understanding the observed nearest-neighbour Coulomb-blockade peak
spacing distribution is of course not new, but its study is focused mainly on single grain
quantum dots. Theoretical investigations pertaining to diffusive or chaotic quantum dots
reveal a marked deviation from Gaussian distribution [1]. Experimentally, it is confirmed that,
even for such relatively simple systems, the distribution displays a long tail towards small
spacing [2]. Distribution of peak spacings in a magnetic field (which is outside the scope of
the present work) has recently been investigated [3].

The present work concentrates on the distribution of spacings between Coulomb-blockade
peaks in large semiconductor quantum dots. In particular, we are interested in fluctuations of
these quantities with the number N of electrons on the dot. The main problem can be stated
as follows: according to the simplest picture (charging model), in which the quantum dot is
regarded as a single-electron island whose coupling with the leads is through its capacitance
C, the total potential energy of a quantum dot with N electrons and charge Q = Ne is
Q2/2C − VgQ, where Vg is the gate voltage and e is the electron charge. The position of the
Nth Coulomb-blockade peak occurs at a gate voltage Vg = Ne2

C
. This peak position is then a

linear function of N, and therefore the spacing between two adjacent peaks should be a constant
e2/C, independent of N. This is not always confirmed experimentally as we have indicated
above [2] even for a single metallic grain. The situation is even more intriguing if the quantum
dot is large and might contain more than a single-electron puddle. As indicated in a series of
recent experiments [4], the spacing between adjacent Coulomb-blockade peaks occasionally
vanishes, namely, Coulomb-blockade peaks tend to bunch. The problem is therefore to
explain why the results predicted from a simple charging model deviate substantially from the
experimental observation.

In [5], a generalized charging model has been tested, where it is assumed that the large dot
used in the experiments [4] could be divided into a set of potential wells (metallic grains) with
random capacitances and random mutual inductances. This casts the question of Coulomb-
blockade peak spacing distribution into the problem of elucidating the statistics of the addition
spectrum of a relatively simple physical system. It consists of K metallic grains (or capacitors),
such that the number of electrons on the ith grain is ni (i = 1, 2, . . . , K), the total number of
electrons being N. The charging model for such a system (at zero temperature) is based on the
assumption that the distribution of electrons among the grains is determined by requiring that
the electrostatic energy E(N) of a dot containing N electrons is minimal. It is useful at this
point to recall the basic facts pertaining to the energy of the electrostatic field of conductors
[7, pp 3–7]. The electrostatic energy of the system is a bilinear form in the numbers ni . This
form is given by a K × K matrix W = 1

2C−1. Here, C is a positive-definite symmetric matrix
(with entries cij ; i, j = 1, 2, . . . , K) of capacitance and inductance coefficients. Physically,
the matrix C has positive diagonal entries and negative (more precisely, non-positive) non-
diagonal entries [7, pp 3–7],

cij = cji, cii > 0, cij � 0 (i �= j). (1)

On the other hand, all the elements of C−1 are non-negative. More precisely, the entries
wij , i, j = 1, 2, . . . , K , of the matrix W satisfy

wii > 0, wij � 0 (i �= j). (2)

The off-diagonal entries cij , i �= j , decay as an inverse power of the distance between the
grains, while the diagonal entries cii are proportional to the geometrical size of the grains.
The notion of randomness enters when we recall that, experimentally, the sizes of the grains,
as well as the distances between them, are random quantities. This means that the elements
of the matrix C are random numbers (subject, of course, to the required symmetries (1)). The
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spacing between Coulomb-blockade peaks is equal to the second difference of the ground-state
energy. In other words, the distribution of spacing peaks is determined by the statistics of the
inverse compressibility,

χN ≡ E(N + 1) − 2E(N) + E(N − 1). (3)

When two Coulomb-blockade peaks coincide, the second difference χN vanishes. Note that,
on the average (and on a large scale), the energy E(N) grows quadratically with N. Therefore,
one would expect the second difference to stay finite and N independent. However, there is
no simple relation such as E(N) = aN + bN2. The deviation of E(N) from exact quadratic
behaviour makes its second difference χN non-constant and a fluctuating quantity. It is
precisely these fluctuations which we intend to study. As we shall see, the fact that electron
charge is quantized makes this task non-trivial.

Having explained the physical motivation, let us recall that the present mathematical
problem is also intriguing because it involves the notions of randomness and discreteness. We
then pose the mathematical problem: what is the distribution p(χ) of inverse compressibility
for a given system of metallic grains with random capacitive matrix C? As a crude
approximation, it was assumed in [6] that the metallic grains are indeed very far apart, and the
matrix C is nearly diagonal, its K diagonal entries (capacitances) being random numbers. The
energy of the system in the diagonal case is given by

E(N) = min
K∑

i=1

1

2ci

n2
i

(
subject to

K∑
i=1

ni = N

)
. (4)

The minimum in (4) is taken over all possible partitions (ni)
K
i=1 of N. It was first proved

that the minimum problem (4) has the following convenient feature: if n1, n2, . . . , nK are
the argument values bringing E(N) to its minimal value for some N, then the minimum
for N + 1 is obtained by retaining all nis, except for one which is increased by 1. This
allowed an exact determination of the distribution function according to which the sequence
χN is distributed. For a random set of capacitors (c1, c2, . . . , cK are the random numbers
with probability distribution P(c1, c2, . . . , cK)), the distribution of the inverse compressibility
F(χ) was calculated in [6].

Our next goal is to study this problem for general positive-definite matrices C. The
problem turns out to be quite harder. To begin with, it is no longer true that the optimal
solution for N + 1 is obtained in a simple manner from that for N. That is, for each N we need
to re-distribute the N electrons between the grains, and it may well happen that, although the
nis grow in general with N, some of them will actually decrease infinitely often as N increases
by 1 each time. Namely, there will exist infinitely many values of N for which the optimal
value of some ni decreases as N grows to N + 1. Thus, the problem entails new behavioural
patterns with respect to the diagonal case.

Our main result in this paper is an algorithm for calculating the distribution function
corresponding to (χN). Moreover, we show that this function is piecewise polynomial. We
state the result in section 2. Section 3 is a short digression, discussing a few notions which
arise in the proof. The proof of the main theorem is given in section 4. As the algorithm
is only implicit in the course of the proof, we summarize it after the end of the proof more
explicitly as an algorithm. This is accomplished in section 5.

2. The main results

Mathematically, our problem is as follows. Let C = (cij )
K
i,j=1 be a positive-definite matrix,

with positive diagonal elements and non-positive off-diagonal elements. Assume that the sum
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of elements in every row of C is positive and that all entries of 1
2C−1 = W = (wij )

K
i,j=1 are

non-negative. Put

E(N) = min




K∑
i,j=1

wijninj : ni ∈ Z+,

K∑
i=1

ni = N


 , N ∈ N, (5)

where N is the set of positive integers and Z+ = N ∪ {0}. We want to understand the statistical
behaviour of the sequence E(N), and in particular that of the second difference sequence

χN = E(N + 1) − 2E(N) + E(N − 1). (6)

To formulate our main result, we need a few definitions and notation.

Definition 2.1. Let (xn)
∞
n=1 be a sequence of real numbers and F a distribution function. The

sequence (xn) is asymptotically F-distributed if

|{1 � n � M : xn � x}|
M

−→
M→∞

F(x)

for every continuity point x of F (where |S| denotes the cardinality of a finite set S).

The definition almost coincides with [8, p 53, definition 7.1], except that there the
sequence (xn) is considered only modulo 1. Note that a sequence need not be asymptotically
F-distributed for some F, as the following example shows.

Example 2.1. The sequence of numbers

0, 1, . . . , 1,︸ ︷︷ ︸
10

0, . . . , 0,︸ ︷︷ ︸
102

1, . . . , 1,︸ ︷︷ ︸
103

. . .

is not asymptotically F-distributed for any F.

A stronger notion is obtained when we require not only long initial block of the sequence
to behave approximately according to F, but rather require any long block to behave so. This
leads to the following definition ([8, p 40, definition 5.1] and [8, p 200, definition 3.2]):

Definition 2.2. In the set-up of definition 2.1, (xn) is asymptotically well F-distributed if

|{L < n � M : xn � x}|
M − L

−→
M−L→∞

F(x)

for every continuity point x of F.

The following example demonstrates that the property of asymptotic well F-distribution
is indeed strictly stronger than that of asymptotic F-distribution.

Example 2.2. The sequence of numbers

0︸︷︷︸
1

, 1︸︷︷︸
1

, 0, 0︸︷︷︸
2

, 1, 1︸︷︷︸
2

, 0, 0, 0︸ ︷︷ ︸
3

, 1, 1, 1︸ ︷︷ ︸
3

, . . .

is asymptotically F-distributed, where F is the distribution function

F(x) =



0, x < 0,
1
2 , 0 � x < 1,

1, x � 1,

but it is not asymptotically well F-distributed.
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Definition 2.3. A function g : R → R is piecewise polynomial if there exist intervals (finite
or infinite) Ij ⊆ R and polynomials Qj, 1 � j � m, such that

g(x) = Qj(x), x ∈ Ij , 1 � j � m.

The degree of g is max1�j�m deg Qj .

Returning to our problem, let bi =∑K
j=1 cij , 1 � i � K , be the row sums of the matrix

C. Since the matrix C is random, in the generic case the numbers b1, b2, . . . , bK are linearly
independent over the rationals. (That is, considered as vectors in the space R over the field of
rational numbers Q, they are independent.)

Now we can formulate our main result.

Theorem 2.1. Let C be a positive-definite symmetric matrix, with positive row sums b1,

b2, . . . , bK and let W = 1
2C−1. Suppose that b1, b2, . . . , bK are linearly independent over the

rationals. Then the sequence (χN)∞N=1 of the second differences, defined via (5) and (6), is
asymptotically well F-distributed, where F is a continuous piecewise polynomial function of
degree at most K − 1, which can be effectively computed.

As mentioned in the introduction, a phenomenon which occurs in the general case dealt
with here, but not in the special case of diagonal matrices C, is that, as we pass from N to
N + 1, there may be re-distribution of the nis in the optimal solution. The following example
is to that effect.

Example 2.3. Let

C =

 2 0 −1

0 2 −1
−1 −1 3


 , W = 1

2
C−1 = 1

16


5 1 2

1 5 2
2 2 4


 .

Then,

E(N) = 1
16 min

n1+n2+n3=N,ni�0

(
5n2

1 + 2n1n2 + 4n1n3 + 5n2
2 + 4n2n3 + 4n2

3

)
.

Using the techniques in the beginning of section 4, it is easy to verify that the optimal values
of n1, n2, n3 are given by

(n1, n2, n3) =




(
N

3
,
N

3
,
N

3

)
, N ≡ 0 (mod 3),(

N − 1

3
,
N − 1

3
,
N + 2

3

)
, N ≡ 1 (mod 3),(

N + 1

3
,
N + 1

3
,
N − 2

3

)
, N ≡ 2 (mod 3).

Thus, for any non-negative integer K, when passing from N = 3k + 1 to N = 3k + 2, the value
of n3 at the optimal point decreases from k + 1 to k.

3. Uniform distribution modulo 1

In this section, we briefly discuss the notion of uniform distribution modulo 1 and recall a few
related results, which will be needed in the proof of theorem 2.1.
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Definition 3.1. A sequence (xn)
∞
n=1 of real numbers is uniformly distributed modulo 1 if

|{1 � n � N : a � {xn} < b}|
N

−→
N→∞

b − a, 0 � a < b � 1,

where {t} is the fractional part of a real number t [8, p 1, definition 1.1].
In terms of definition 2.1, (xn) is uniformly distributed modulo 1 if and only if the sequence

({xn}) of fractional parts is F-distributed, where F is the distribution function of the uniform
distribution on [0, 1]:

F(x) =



0, x < 0,

x, 0 � x � 1,

1, x > 1.

(7)

The notion of uniform distribution modulo 1 has a multi-dimensional analogue. A
sequence (xn)

∞
n=1 in Rs is uniformly distributed modulo 1 in Rs if

|{1 � n � N : a � {xn} < b}|
N

−→
N→∞

s∏
i=1

(bi − ai), 0 � a < b � 1,

where 0 = (0, 0, . . . , 0) ∈ Rs , a = (a1, a2, . . . , as), and so forth, and inequalities between
vectors in Rs are to be understood componentwise [8, p 47, definition 6.1].

The notion of uniform distribution modulo 1, both in the one-dimensional and the multi-
dimensional cases, has a stronger version, whereby the required property holds not only
along initial blocks of the sequence, but along any blocks of larger and larger lengths
[8, p 40, definition 5.1]. A sequence satisfying this stronger property is well distributed
modulo 1. Obviously, well distribution modulo 1 is equivalent in the one-dimensional case
to F-distribution of the sequence of fractional parts for the function F given by (7). A
basic example of a sequence which is uniformly distributed modulo 1 is (nα)∞n=1, where α

is an arbitrary irrational [8, p 8, definition 2.1]. In the multi-dimensional case, the sequence
(nα1, nα2, . . . , nαs)

∞
n=1 is uniformly distributed modulo 1 in Rs if and only if the numbers

1, α1, α2, . . . , αs are linearly independent over Q [8, pp 48–49]. Moreover, for these sequence,
well distribution is equivalent to uniform distribution.

Recall that the density of a set A ⊆ N is given by

D(A) = lim
M→∞

|A ∩ [1,M]|
M

if the limits exists. If, moreover, the limit

BD(A) = lim
M−L→∞

|A ∩ (L,M]|
M − L

exists, then it is called the Banach density of A.
We can rephrase the definition of uniform distribution modulo 1 using the notion of density

of a set. Namely, (xn)
∞
n=1 is uniformly distributed modulo 1 if for every interval I ⊆ [0, 1) we

have

D({n : {xn} ∈ I }) = |I |, (8)

where |I | denotes the length of I. Similarly, (xn)
∞
n=1 is well distributed modulo 1 if (8) continues

to hold when the density of the left-hand side is replaced by Banach density.
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4. Proof of theorem 2.1

To avoid complicated notation, we shall prove in theorem 2.1 only that (xN)∞N=1 is
asymptotically F-distributed and not that it is asymptotically well F-distributed. As will be seen
in the proof, our result depends on the fact that the sequence ({Nb1}, {Nb2}, . . . , {NbK−1})
is uniformly distributed modulo 1 in RK−1. Since this sequence is actually well distributed
modulo 1, the same proof shows that (xN)∞N=1 is actually well F-distributed.

Along with the sequence E(N) from (5), it is very useful to consider the sequence E1(N),
defined by

E1(N) = min




K∑
i,j=1

wijxixj : xi ∈ R,

K∑
i=1

xi = N


 , N ∈ N. (9)

Obviously, E1(N) � E(N) for each N. We shall refer to the minimum problems on the
right-hand side of (5) and of (9) as the constrained problem and the unconstrained problem,
respectively.

Denote by e the column K-vector with all entries 1.

Lemma 4.1. The unique minimum of the unconstrained problem is

x0 = N∑K
i,j=1 cij

· Ce.

and the corresponding unconstrained minimum is E1(N) = N2

2
∑K

i,j=1 cij

.

Due to our assumption regarding the positivity of the row sums of C, all components of
x0 are positive. Multiplying all entries of C by any constant c > 0 we obtain an equivalent
problem. Taking c = (∑K

i,j=1 cij

)−1
, we shall henceforth assume that

∑K
i,j=1 cij = 1. In

particular, denoting b = (b1, b2, . . . bK)t , we have

x0 = NCe = Nb (10)

and

E1(N) = N2

2
. (11)

Proof of lemma 4.1. Let x �= x0 be any feasible solution of the unconstrained problem.
Putting a = N∑K

i,j=1 cij

and y = x − x0, we obtain

xtWx = (x0 + y)tW(x0 + y) = xt
0Wx + 2xt

0Wy + ytWy

= xt
0Wx0 + a1tCC−1y + ytWy

= xt
0Wx0 + a1ty + ytWy = xt

0Wx0 + ytWy > xt
0Wx0.

Consequently,

E1(N) = N∑K
i,j=1 cij

etCW
N∑K

i,j=1 cij

Ce = N2

2
∑K

i,j=1 cij

.

�

Lemma 4.2. E1(N) � E(N) −∑K
i,j=1 wij for every N.

Proof. Let x0 = (x01, x02, . . . , x0K) be the minimum point of the unconstrained problem.
Let r = ∑K

i=1{x0i} be the sum of fractional parts of all coordinates of x0. Obviously, r is
an integer, 0 � r < K . Let i1, i2, . . . , iK be all integers between 1 and K, ordered so that
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x0,i1

}
�
{
x0,i2

}
� · · · �

{
x0,iK

}
(where ties are resolved arbitrarily). Consider the vector

n = (n1, n2, . . . , nK) defined by

ni =
{

[x0,i], i = i1, i2, . . . , iK−r ,

[x0,i] + 1, otherwise.

As mentioned in lemma 4.1, all x0,is are positive, and hence n is a feasible solution of the
constrained problem. Set y = n − x0. Since all coordinates of y lie in the interval (−1, 1), as
in the proof of lemma 4.1, we have

E(N) � ntWn = xt
0Wx0 + ytWy � E1(N) +

K∑
i,j=1

wij (12)

which proves the lemma. �

Lemma 4.3. There exists an effective constant � = �(C) such that, for every N, the distance
between the solution of the constrained problem and that of the unconstrained problem does
not exceed �.

Proof. Write W = P −1DP , where P is orthogonal and D diagonal. Let M be an upper bound
on the eigenvalues of C (for example, the L∞-norm max1�i�K

∑K
j=1 |cij | of C). Then M−1 is

a lower bound for the eigenvalues of W , namely for the diagonal entries of D. Let F be the
diagonal matrix with positive diagonal entries and F 2 = D. Obviously, ‖F z‖2 � M−1/2‖z‖2

for every z ∈ RK . Then, for every y ∈ RK we have

ytWy = ytP −1FFP y = ‖FP y‖2
2 � ‖P y‖2

2

/
M = ‖y‖2

2

/
M.

Now let x0 and n = x0 + y be minimum points of the unconstrained problem and of the
constrained problem, respectively. Then,

E(N) = ntWn = xt
0Wx0 + ytWy,

which implies by lemma 4.2 that ytWy �
∑K

i,j=1 wij . Thus,

‖y‖2
2

/
M �

K∑
i,j=1

wij ,

which yields the conclusion of the lemma with

� =
√√√√M

K∑
i,j=1

wij .

�

Proof of theorem 2.1. Lemmas 4.1–4.3 provide a simple algorithm for calculating E(N) for
each N in constant time. Namely, we find the point x0 yielding the optimal E1(N) according
to lemma 4.1, calculate the value of ntWn for all integral points n, with coordinate sum N,
within distance � from x0, and take the best of them. If the optimal point turns out to be
n = x0 + y, we shall refer to y as the correction vector. We have y = n − x0 = l − {x0},
where {x0} denotes the vector of fractional parts of the coordinates of x0 and l belongs to some
finite effective set L of integer vectors. Since the sum of coordinates of the correction vector
is always 0, the sum of coordinates of l must equal that of {x0}. Thus, L consists of all integer
vectors l, for which the vector l − {x0} is of norm not exceeding the bound in lemma 4.3 and
its coordinates sum vanishes. To emphasize the dependence of L on x0, we shall sometimes
write L(x0) instead of L. �
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Now when choosing the optimal l out of L, we first note that, among any two candidates
l1 and l2, the former will be better (or equal) than the latter if and only if

(x0 + l1 − {x0})tW(x0 + l1 − {x0}) � (x0 + l2 − {x0})tW(x0 + l2 − {x0}).
This inequality is easily seen to be equivalent to

2(l2 − l1)
tW {x0} � lt2W l2 − lt1W l1.

Consequently, l is the optimal choice if and only if

2(l′ − l)tW {x0} � (l′)tW l′ − ltW l, l′ ∈ L. (13)

To study the second differences

χN = E(N + 1) − 2E(N) + E(N − 1),

we shall write each term on the right-hand side in the form E1(N + j) + dj for an appropriate
dj . In fact, as in (12), denoting by y1, y2 and y3 the correction vectors for N −1, N and N + 1,
respectively, we have

χN = E1(N + 1) − 2E1(N) + E1(N − 1) + yt
3Wy3 − 2yt

2Wy2 + yt
1Wy1. (14)

By (11),

χN = 1 + yt
3W2y3 − 2yt

2Wy2 + yt
1Wy1. (15)

Let x0, x′
0, x′′

0 be the points yielding the optimal values of E1(N − 1), E1(N), E1(N + 1),
respectively. In view of (10),

x′
0 = x0 + b, x′′

0 = x0 + 2b. (16)

For appropriate integer vectors p ∈ L(x0), p′ ∈ L(x′
0), p′′ ∈ L(x′′

0),

y1 = p − {x0}, y2 = p′ − {x′
0}, y3 = p′′ − {x′′

0}. (17)

The vectors p, p′, p′′ are determined by the system of inequalities:


2(l − p)tW {x0} � ltW l − ptWp, l ∈ L(x0),

2(l − p′)tW {x′
0} � ltW l − (p′)tWp′, l ∈ L(x′

0),

2(l − p′′)tW {x′′
0} � ltW l − (p′′)tWp′′, l ∈ L(x′′

0).

(18)

Due to (16), it is natural to try to rewrite (18) in terms of {x0} without referring to {x′
0} and

{x′′
0}. Divide the K-dimensional torus TK , which we identify with [0, 1)K , according to the

vector b, as follows.
The ith coordinate {x ′

0i} of {x ′
0} may be either {x0i} + bi or {x0i} + bi − 1, depending on

whether {x ′
0i}+bi is smaller than 1 or not, respectively. Similarly, {x ′′

0i} may assume one of the
three values {x0i} + 2bi − c, where c = 0, 1, 2. Divide the circle T into three disjoint intervals
(actually arcs), on each of which both {x ′

0i} and {x ′′
0i} assume the same form in terms of {x0i}.

We have to distinguish between two cases:

(1) If bi � 1
2 , write

T = [0, 1 − 2bi) ∪ [1 − 2bi, 1 − bi) ∪ [1 − bi, 1). (19)

If {x0i} belongs to the first interval on the right-hand, then

{x ′
0i} = {x0i} + bi, {x ′′

0i} = {x0i} + 2bi,

if it belongs to the second

{x ′
0i} = {x0i} + bi, {x ′′

0i} = {x0i} + 2bi − 1,

and if it belongs to the third

{x ′
0i} = {x0i} + bi − 1, {x ′′

0i} = {x0i} + 2bi − 1.
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(2) If bi > 1
2 , write

T = [0, 1 − bi) ∪ [1 − bi, 2 − 2bi) ∪ [2 − 2bi, 1). (20)

This time, depending on the interval on the right-hand side containing {x0i}, we have
either

{x ′
0i} = {x0i} + bi, {x ′′

0i} = {x0i} + 2bi − 1,

or

{x ′
0i} = {x0i} + bi − 1, {x ′′

0i} = {x0i} + 2bi − 1,

or

{x ′
0i} = {x0i} + bi − 1, {x ′′

0i} = {x0i} + 2bi − 2.

Let Ii1, Ii2, Ii3 be the intervals on the right-hand side of (19) or (20), depending on whether
bi � 1

2 or not, respectively. Denote

�η1η2...ηK−1 = I1η1 × I2η2 × · · · × IK−1,ηK−1 , η1, . . . , ηK−1 ∈ {1, 2, 3}. (21)

The sets �η1η2...ηK−1 decompose the (K − 1)-dimensional torus into a union of 3K−1 disjoint
boxes:

TK−1 =
3⋃

η1=1

3⋃
η2=1

· · ·
3⋃

ηK−1=1

�η1η2...ηK−1 .

The information provided by the vector {x0} is partly redundant as the fact that
∑K

i=1{x0i}
is an integer determines each component in terms of the others. To avoid this inconvenience,
we shall eliminate, say, {x0K}. Divide TK−1 into K parts as follows:

�s = {(t1, . . . , tK−1) ∈ TK−1 : s − 1 <

K−1∑
i=1

ti � s}, s = 0, . . . , K − 1. (22)

(Thus, �0 = {0}, while all other �is have non-empty interior.) Suppose that ({x01}, . . . ,
{x0,K−1}) ∈ �s. Then,

{x0K} = s − {x01} − · · · − {x0,K−1}. (23)

We need a further subdivision to ensure that, in each cell, both {x ′
0K} and {x ′′

0K} assume the
same form in terms of {x01}, . . . , {x0,K−1}. To this end, we first split T into three subintervals,
similarly to (19) and (20), depending on whether bK � 1

2 or bK > 1
2 , namely,

T = [0, 1 − 2bK) ∪ [1 − 2bK, 1 − bK) ∪ [1 − bK, 1) (24)

or

T = [0, 1 − bK) ∪ [1 − bK, 2 − 2bK) ∪ [2 − 2bK, 1). (25)

Let IK1, IK2, IK3 be the intervals in the splitting. Put

�s
η =
{

(t1, . . . , tK−1) ∈ �s : s −
K−1∑
i=1

ti ∈ IKη

}
, η = 1, 2, 3. (26)

Suppose bK � 1
2 . If the point ({x01}, . . . , {x0,K−1}) belongs to �s

1, then

{x ′
0K} = s −

K−1∑
i=1

{x0i} + bK, {x ′′
0K} = s −

K−1∑
i=1

{x0i} + 2bK,
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if it belongs to �s
2, then

{x ′
0K} = s −

K−1∑
i=1

{x0i} + bK, {x ′′
0K} = s −

K−1∑
i=1

{x0i} + 2bK − 1,

and if it belongs to �s
3, then

{x ′
0K} = s −

K−1∑
i=1

{x0i} + bK − 1, {x ′′
0K} = s −

K−1∑
i=1

{x0i} + 2bK − 1.

If bK > 1
2 , then we similarly find linear expressions for {x ′

0K} and {x ′′
0K} in terms of {x0i}s on

each �s
η.

Denote

�s
η1η2...ηK

= �η1η2...ηK−1 ∩ �s
ηK

, 0 � s � K − 1, 1 � ηi � 3. (27)

Then,

TK−1 =
K−1⋃
s=0

3⋃
η1=1

· · ·
3⋃

ηK=1

�s
η1...ηK

forms a decomposition of TK−1 into a disjoint union of K · 3K disjoint polytopes. The
important property of this decomposition is that, if ({x01}, . . . , {x0,K−1}) belongs to any cell
�s

η1η2...ηK
, the 2K + 1 numbers {x0K}, {x ′

01}, . . . , {x ′
0K}, {x ′′

01}, . . . , {x ′′
0K} depend linearly on

the first K − 1 coordinates {x01}, . . . , {x0,K−1}. That is,

{x ′
0i} = {x0i} + bi − α′

i , 1 � i � K − 1,

{x ′′
0i} = {x0i} + 2bi − α′′

i , 1 � i � K − 1,
(28)

{x ′
0K} = s −

K−1∑
i=1

{x0i} + bK − α′
K,

{x ′′
0K} = s −

K−1∑
i=1

{x0i} + 2bK − α′′
K,

(29)

where α′
i ∈ {0, 1}, α′′

i ∈ {0, 1, 2}, i = 1, 2, . . . , K . Altogether, there exists a linear
transformation T : RK−1 → RK , and for each cell �s

η1η2...ηK
there exist vectors v, v′, v′′ ∈ RK ,

such that, denoting x = ({x01}, . . . , {x0,K−1}), we have

{x0} = T x + v, {x′
0} = T x + v′, {x′′

0} = T x + v′′. (30)

On each cell �s
η1η2...ηK

we may now rewrite the system (18), defining the optimal vectors
p, p′, p′′ in the form


2(l − p)tWT x � ltW l − ptWp − 2(l − p)tWv, l ∈ L,

2(l − p′)tWT x � ltW l − (p′)tWp′ − 2(l − p′)tWv′, l ∈ L′,
2(l − p′′)tWT x � ltW l − (p′′)tWp′′ − 2(l − p′′)tWv′′, l ∈ L′′.

(31)

Note that we have suppressed the dependence of the sets L,L′, L′′ on x0, x′
0, x′′

0. In fact,
considering L, for example, it is clear that each candidate l ∈ L must have sum of coordinates
s and, in view of lemma 4.3, its norm is bounded above by � +

√
K . Thus, taking

L =
{

l ∈ ZK : ‖l‖ � � +
√

K,

K∑
i=1

li = s

}
,
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L′ =
{

l ∈ ZK : ‖l‖ � � +
√

K,

K∑
i=1

li = s + 1 −
K∑

i=1

α′
i

}
,

L′′ =
{

l ∈ ZK : ‖l‖ � � +
√

K,

K∑
i=1

li = s + 2 −
K∑

i=1

α′′
i

}
,

(where l = (l1, l2, . . . , lK)), we certainly do not miss any potentially optimal vectors p, p′, p′′

by restricting the search to L,L′, L′′, respectively.
For each choice of η1, . . . , ηK, s and of the vectors p, p′, p′′, let P

spp′p′′
η1...ηK

be the set of all
points in �s

η1...ηK
satisfying (31). Then,

TK−1 =
K−1⋃
s=0

3⋃
η1=1

· · ·
3⋃

ηK=1

⋃
p∈L

⋃
p′∈L′

⋃
p′′∈L′′

P spp′p′′
η1...ηK

, (32)

where the sets on the right-hand side are disjoint (up to sets of a smaller dimension).
By (17) and (30), for all points in each sub-polytope P

spp′p′′
η1...ηK

we have optimal correction
vectors constructed in the same way, namely,

y1 = q − T x, y2 = q′ − T x, y3 = q′′ − T x, (33)

where q = p − v, q′ = p′ − v′, q′′ = p′′ − v′′. Hence, if the point x belongs to P
spp′p′′
η1...ηK

, then
χN depends linearly on the coordinates {x01}, . . . , {x0,K−1}:
χN = 1 + (q − T x)tW(q − T x) − 2(q′ − T x)tW(q − T x) + (q′′ − T x)tW(q′′ − T x)

= 2(−q + 2q′ − q′′)tWT x + const, (34)

where const = 1+qtWq−2(q′)tWq′ +(q′′)tWq′′. (Note that all coefficients on the right-hand
side of (34) depend on η1, . . . , ηK, s, p, p′, p′′.)

We need to find the function F according to which the sequence (χN)∞N=1 is asymptotically
F-distributed. To simplify our notation, rewrite (32) in the form

TK−1 =
r⋃

i=1

Pi, (35)

where each Pi is one of the polytopes P
spp′p′′
η1...ηK

. Denote

θN = ({Nb1}, . . . , {NbK−1}), N = 1, 2, . . . ,

and

Ai = {N ∈ N : θN ∈ Pi}, i = 1, 2, . . . , r.

(Ais may intersect, as Pis may intersect on sets of a smaller dimension. However, this will
cause no problem as the intersections are sets of density 0 in N. Alternatively, we may first
decide in some arbitrary way where to place ‘problematic’ integers.)

Let θ
(i)
N be the subsequence of θN , consisting of those elements θN with N ∈ Ai, 1 �

i � r . That is, θ
(i)
N is the Nth element of (θN)∞N=1 which belongs to Ai . Let

(
χ

(i)
N

)∞
N=1 be

the corresponding subsequence of (χN)∞N=1. If the point x lies in Pi , then it belongs to the
subsequence

(
θ

(i)
N

)∞
N=1. Thus, by (34) there exist affine functions ψi : RK−1 → R such that

χ
(i)
N = ψi

(
θ

(i)
N

)
, 1 � i � r, N = 1, 2, . . . . (36)

Since the numbers b1, . . . , bK are linearly independent over Q, so are the numbers
1, b1, . . . , bK−1, and consequently the sequence (θN) is uniformly distributed modulo 1 in
RK−1. Hence, each of the subsequences

(
θ

(i)
N

)∞
N=1, 1 � i � r , is uniformly distributed in
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Pi. By (36), the sequence
(
χ

(i)
N

)∞
N=1 is the image of a uniformly distributed sequence in Pi

under the mapping ψi. Hence, letting (Y1, Y2, . . . , YK−1) be a (K − 1)-dimensional random
variable, uniformly distributed in Pi , we see that

(
χ

(i)
N

)∞
N=1 is Fi-distributed, where Fi is the

distribution function of ψi(Y1, Y2, . . . , YK−1).
According to [6, theorem 2.3], Fi is a piecewise polynomial function, each polynomial

piece being of degree at most K − 1, and can be effectively computed. Since
(
θ

(i)
N

)∞
N=1 is

uniformly distributed modulo 1 in RK−1, the density of each Ai is the measure di of the set
Pi . As Pi is a polytope, this measure can be effectively computed. By [5, lemma 1], (χN)∞N=1
is asymptotically F-distributed, where F =∑r

i=1 diFi . This completes the proof.

5. Summary of the algorithm

In this section, we briefly present our method for explicitly finding the distribution function
of the sequence (χN)∞N=1 as an algorithm, unlike the implicit form in which it was done in the
previous section.

Input. A positive-definite symmetric matrix C, with positive diagonal entries, non-positive
off-diagonal entries and positive row sums. The matrix W = 1

2C−1 has non-negative entries.

Output. The distribution function of the sequence (χN)∞N=1, defined by (6).

Algorithm

(1) Normalize the matrix C as explained after the formulation of lemma 4.1. Denote by b the
vector of row sums of C.

(2) Calculate the constant � of lemma 4.3 according to the proof of that lemma.
(3) Split the (K − 1)-dimensional torus TK−1, which we identify with [0, 1)K−1, according

to the vector b, as follows:

(a) For each 1 � i � K , divide the circle T into three disjoint intervals Ii1, Ii2, Ii3 by
(19) and (20).

(b) Write TK−1 as a union of 3K−1 disjoint boxes �η1η2...ηK−1 by (21).
(c) Decompose TK−1 into K parts �s according to (22).
(d) Divide each �s into three parts �s

η according to (26).
(e) Form the intersections �s

η1η2...ηK
, defined in (27), and find for each of them the

transformation T and the vectors v, v′, v′′, defined prior to (30).
(f) Construct the sub-polytopes P

spp′p′′
η1...ηK

, defined before (32). These sub-polytopes
provide the required decomposition of TK−1 (see (31)).

(4) For each sub-polytope P
spp′p′′
η1...ηK

, or Pi according to the new indexing in (35), find the vectors
q, q′, q′′ of (33), and thus the functions ψi of (36).

(5) Calculate each Fi according to the proof of [6, theorem 2.3].
(6) Calculate the volume di of each Pi by some algorithm for calculating the volume of a

polytope.
(7) Calculate the distribution function of (χN)∞N=1 by the formula F =∑r

i=1 diFi .
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